$R_{\rm int} = 0.076$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

trans-4-*tert*-Butyl-1-methylcyclohexanol hemihydrate

Arto Valkonen,* Reijo Kauppinen and Erkki Kolehmainen

University of Jyväskylä, Department of Chemistry, PO Box 35, FIN-40014 Jyväskylä, Finland

Correspondence e-mail: arto.valkonen@jyu.fi

Received 29 March 2007; accepted 4 April 2007

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; R factor = 0.074; wR factor = 0.146; data-to-parameter ratio = 16.4.

The title compound, $C_{11}H_{22}O \cdot 0.5H_2O$, is a hemihydrate of *trans-4-tert*-butyl-1-methylcyclohexanol, containing one water and two organic molecules in the asymmetric unit. Crystals were obtained from an NMR sample by very slow evaporation of the solvent. In the solid state, the title compound forms a double-layered structure with the organic and water molecules connected by $O-H \cdots O$ hydrogen bonds.

Related literature

For related literature, see: Grignard (1900); Houlihan (1962).

Experimental

Crystal data

 $\begin{array}{l} C_{11}H_{22}O\cdot 0.5H_2O\\ M_r = 179.30\\ \text{Monoclinic, } P2_1/c\\ a = 18.3462 \ (14) \text{ Å}\\ b = 10.2347 \ (5) \text{ Å}\\ c = 12.3661 \ (9) \text{ Å}\\ \beta = 99.049 \ (3)^\circ \end{array}$

Data collection

Bruker Kappa-APEXII diffractometer V = 2293.1 (3) Å³ Z = 8 Mo Kα radiation μ = 0.07 mm⁻¹ T = 173 (2) K 0.40 × 0.35 × 0.05 mm

Absorption correction: none 14932 measured reflections

4033 independent reflections 2783 reflections with $I > 2\sigma(I)$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.074$	H atoms treated by a mixture of
$vR(F^2) = 0.146$	independent and constrained
S = 1.16	refinement
033 reflections	$\Delta \rho_{\rm max} = 0.18 \ {\rm e} \ {\rm \AA}^{-3}$
246 parameters	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ \AA}^{-3}$
restraints	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O21-H21···O32	0.83 (2)	1.90 (2)	2.725 (3)	172 (3)
O32−H32A···O1	0.83(2)	2.01 (2)	2.834 (2)	169 (3)
O32-H32B···O1 ⁱ	0.85(2)	1.98 (2)	2.820(3)	170 (3)
$O1-H1\cdots O21^{ii}$	0.85 (2)	1.87 (2)	2.727 (2)	177 (3)
$O1 - H1 \cdots O21^{ii}$	0.85 (2)	1.87 (2)	2.727 (2)	177

Symmetry codes: (i) -x, -y + 1, -z; (ii) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$.

Data collection: *COLLECT* (Bruker, 2004); cell refinement: *DENZO-SMN* (Otwinowski & Minor, 1997); data reduction: *DENZO-SMN*; program(s) used to solve structure: *SIR2002* (Burla *et al.*, 2003); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*, *PLATON* (Spek, 2003) and *Mercury* (Macrae *et al.*, 2006).

Professor Kari Rissanen is gratefully acknowledged for his help with the structure refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2014).

References

- Bruker (2004). COLLECT. Bruker AXS Inc., Madison, Wisconsin, USA. Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C.,
- Polidori, G. & Spagna, R. (2003). J. Appl. Cryst. 36, 1103.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Grignard, V. (1900). C. R. Hebd. Séances Acad. Sci. 130, 1322-1324.
- Houlihan, W. J. (1962). J. Org. Chem. 27, 3860-3864.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (2003). J. Appl. Cryst. 36, 7–13.

Acta Cryst. (2007). E63, o2461 [doi:10.1107/S1600536807016650]

trans-4-tert-Butyl-1-methylcyclohexanol hemihydrate

A. Valkonen, R. Kauppinen and E. Kolehmainen

Comment

The asymmetric unit of the title compound (I) is presented in Fig. 1. The hydroxyl groups of the *trans*-1-methyl-4-*tert*butylcyclohexanol and the water molecules are connected with each other via an extensive hydrogen bonding network. The water molecule plays the role of a hydrogen bonded bridge between three of the organic molecules and an additional O—H···H bridge is formed between the alcohol units of two of the organic molecules (Table 1). From a supramolecular point of view the crystalline assembly of (I) can be best described as being double-layered (Fig 2.) with the hydroxyl ends of the cyclohexanol moieties and

the water molecules forming a hydrogen bonded hydrophilic layer and the *t*-butyl ends the other hydrophobic layer.

Experimental

trans-1-Methyl-4-*tert*-butylcyclohexanol was obtained by the well-known Grignard method (Grignard, 1900) from 4-*tert*butylcyclohexanone with methylmagnesium iodide. The synthetic procedure and the separation of the isomers was performed according to conditions previously described (Houlihan, 1962). Crystals of (I) grew in an NMR sample tube from which all solvent (CDCl₃) has evaporated. The water present in the crystal structure has most probably originated from moisture in the NMR solvent.

Refinement

All H atoms were visible in electron density maps but were ultimately placed in idealized positions, except O—H and methyl H's, and allowed to ride on their parent atoms at C—H distances of 0.99 (methylene), and 1.00 Å (methine) with $U_{iso}(H) = 1.2$ times $U_{eq}(C)$. Methyl H's were allowed to rotate to best fit the experimental electron density at a C—H distance of 0.98 Å with $U_{iso}(H) = 1.5$ times $U_{eq}(C)$. H's attached to O were found in the electron density map and were fixed to an O—H distance of 0.84 Å with $U_{iso}(H) = 1.5$ times $U_{eq}(O)$. The crystals of (I) were rather thin plates and showed a weak scattering power resulting in a large number of reflections with low intensities.

Figures

Fig. 1. View of the asymmetric unit of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented by circles of arbitrary size.

Fig. 2. Packing diagram of (I) showing the layered structure, viewed along the c-axis. Dotted lines indicate O—H…H hydrogen bonds.

trans-4-tert-Butyl-1-methylcyclohexanol hemihydrate

Crystal data	
$C_{11}H_{22}O \cdot 0.5H_2O$	$F_{000} = 808$
$M_r = 179.30$	$D_{\rm x} = 1.039 {\rm ~Mg~m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 129292 reflections
<i>a</i> = 18.3462 (14) Å	$\theta = 0.4 - 27.9^{\circ}$
<i>b</i> = 10.2347 (5) Å	$\mu=0.07~mm^{-1}$
c = 12.3661 (9) Å	T = 173 (2) K
$\beta = 99.049 \ (3)^{\circ}$	Plate, colourless
V = 2293.1 (3) Å ³	$0.40\times0.35\times0.05~mm$
Z = 8	

Data collection

Bruker Kappa-APEXII diffractometer	2783 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.076$
Monochromator: graphite	$\theta_{\text{max}} = 25.0^{\circ}$
T = 173(2) K	$\theta_{\min} = 2.3^{\circ}$
φ and ω scans	$h = -21 \rightarrow 21$
Absorption correction: none	$k = -12 \rightarrow 12$
14932 measured reflections	$l = -14 \rightarrow 14$
4033 independent reflections	

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H atoms treated by a mixture of independent and constrained refinement
$R[F^2 > 2\sigma(F^2)] = 0.074$	$w = 1/[\sigma^2(F_o^2) + (0.0342P)^2 + 1.3597P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.146$	$(\Delta/\sigma)_{\rm max} < 0.001$
<i>S</i> = 1.16	$\Delta \rho_{max} = 0.18 \text{ e } \text{\AA}^{-3}$
4033 reflections	$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
246 parameters	Extinction correction: none
4 restraints	

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.03005 (9)	0.68552 (16)	0.06583 (14)	0.0316 (4)
H1	-0.0023 (13)	0.731 (2)	0.091 (2)	0.047*
O21	0.06949 (10)	0.33358 (17)	0.34636 (14)	0.0339 (5)
H21	0.0570 (16)	0.357 (3)	0.2816 (15)	0.051*
O32	0.01989 (12)	0.42567 (18)	0.14125 (16)	0.0432 (5)
H32A	0.0244 (17)	0.5047 (18)	0.128 (3)	0.065*
H32B	0.0080 (17)	0.384 (3)	0.0812 (18)	0.065*
C1	0.10166 (13)	0.7489 (2)	0.0834 (2)	0.0283 (6)
C2	0.15369 (13)	0.6563 (2)	0.0371 (2)	0.0321 (6)
H2A	0.1393	0.6513	-0.0434	0.038*
H2B	0.1485	0.5677	0.0673	0.038*
C3	0.23430 (14)	0.6985 (2)	0.0635 (2)	0.0315 (6)
H3A	0.2406	0.7829	0.0271	0.038*
H3B	0.2656	0.6329	0.0340	0.038*
C4	0.25983 (13)	0.7131 (2)	0.1867 (2)	0.0288 (6)
H4	0.2527	0.6258	0.2198	0.035*
C5	0.20753 (14)	0.8072 (3)	0.2325 (2)	0.0363 (7)
H5A	0.2217	0.8128	0.3130	0.044*
H5B	0.2128	0.8954	0.2018	0.044*
C6	0.12703 (14)	0.7644 (3)	0.2057 (2)	0.0336 (6)
H6A	0.1208	0.6801	0.2425	0.040*
H6B	0.0955	0.8299	0.2348	0.040*
C7	0.09359 (16)	0.8792 (3)	0.0237 (2)	0.0463 (8)
H7A	0.0757	0.8644	-0.0543	0.069*
H7B	0.1416	0.9231	0.0321	0.069*
H7C	0.0583	0.9341	0.0547	0.069*
C8	0.34265 (14)	0.7475 (2)	0.2197 (2)	0.0314 (6)
С9	0.36226 (15)	0.7486 (3)	0.3444 (2)	0.0473 (8)
H9A	0.3471	0.6658	0.3738	0.071*
H9B	0.3366	0.8210	0.3741	0.071*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H9C	0.4157	0.7597	0.3652	0.071*
C10	0.36147 (16)	0.8816 (3)	0.1754 (2)	0.0462 (8)
H10A	0.3509	0.8808	0.0952	0.069*
H10B	0.4139	0.9004	0.1992	0.069*
H10C	0.3315	0.9491	0.2036	0.069*
C11	0.39106 (15)	0.6440 (3)	0.1758 (2)	0.0450 (8)
H11A	0.3850	0.6501	0.0958	0.068*
H11B	0.3761	0.5568	0.1967	0.068*
H11C	0.4429	0.6590	0.2068	0.068*
C21	0.14062 (13)	0.2723 (2)	0.3483 (2)	0.0285 (6)
C22	0.19398 (13)	0.3706 (2)	0.3113 (2)	0.0308 (6)
H22A	0.1898	0.4544	0.3500	0.037*
H22B	0.1796	0.3869	0.2319	0.037*
C23	0.27437 (14)	0.3250 (2)	0.3330 (2)	0.0327 (6)
H23A	0.3064	0.3946	0.3107	0.039*
H23B	0.2799	0.2468	0.2878	0.039*
C24	0.29976 (14)	0.2918 (2)	0.4539(2)	0.0293 (6)
H24	0.2931	0.3731	0.4960	0.035*
C25	0.24681 (14)	0.1906 (3)	0.4889 (2)	0.0361 (7)
H25A	0.2511	0.1082	0.4485	0.043*
H25B	0.2611	0.1721	0.5680	0.043*
C26	0.16676 (14)	0.2369 (3)	0.4675 (2)	0.0338 (6)
H26A	0.1347	0.1671	0.4893	0.041*
H26B	0.1616	0.3143	0.5137	0.041*
C27	0.13090 (16)	0.1525 (3)	0.2747 (2)	0.0436 (7)
H27A	0.1109	0.1791	0.1997	0.065*
H27B	0.0967	0.0914	0.3015	0.065*
H27C	0.1788	0.1098	0.2754	0.065*
C28	0.38271 (14)	0.2548 (2)	0.4823 (2)	0.0319 (6)
C29	0.40368 (16)	0.2437 (3)	0.6070 (2)	0.0448 (7)
H29A	0.3933	0.3266	0.6411	0.067*
H29B	0.4564	0.2235	0.6256	0.067*
H29C	0.3748	0.1738	0.6340	0.067*
C30	0.40024 (15)	0.1249 (3)	0.4304 (2)	0.0428 (7)
H30A	0.3871	0.1308	0.3506	0.064*
H30B	0.3717	0.0546	0.4578	0.064*
H30C	0.4531	0.1061	0.4497	0.064*
C31	0.43134 (15)	0.3613 (3)	0.4435 (2)	0.0469 (8)
H31A	0.4177	0.4465	0.4706	0.070*
H31B	0.4241	0.3626	0.3633	0.070*
H31C	0.4833	0.3431	0.4719	0.070*
			-	
Atomic displa	cement parameters ($\hat{A^2}$	²)		
	r.11 r	.22	3 12	r 13

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0240 (10)	0.0353 (10)	0.0356 (11)	-0.0002 (8)	0.0053 (8)	-0.0053 (8)
O21	0.0308 (11)	0.0400 (11)	0.0311 (11)	0.0045 (8)	0.0054 (9)	0.0041 (9)
032	0.0560 (13)	0.0383 (11)	0.0325 (11)	-0.0040 (10)	-0.0015 (10)	0.0024 (9)

C1	0.0253 (14)	0.0288 (13)	0.0309 (15)	-0.0004 (11)	0.0045 (12)	-0.0014 (11)
C2	0.0304 (15)	0.0382 (15)	0.0276 (15)	-0.0015 (12)	0.0046 (11)	-0.0053 (12)
C3	0.0295 (15)	0.0372 (15)	0.0299 (15)	0.0014 (12)	0.0109 (12)	-0.0046 (12)
C4	0.0311 (15)	0.0281 (13)	0.0282 (15)	-0.0003 (11)	0.0081 (12)	0.0004 (11)
C5	0.0312 (16)	0.0475 (16)	0.0297 (15)	0.0029 (12)	0.0032 (12)	-0.0127 (13)
C6	0.0288 (15)	0.0417 (15)	0.0313 (16)	0.0034 (12)	0.0073 (12)	-0.0066 (12)
C7	0.0408 (18)	0.0415 (17)	0.055 (2)	0.0016 (13)	0.0027 (15)	0.0139 (14)
C8	0.0286 (15)	0.0374 (15)	0.0283 (15)	-0.0004 (11)	0.0050 (12)	-0.0011 (12)
C9	0.0326 (17)	0.071 (2)	0.0365 (18)	0.0012 (15)	0.0007 (14)	-0.0018 (15)
C10	0.0414 (18)	0.0430 (17)	0.0542 (19)	-0.0121 (14)	0.0079 (15)	-0.0030 (14)
C11	0.0314 (16)	0.0510 (18)	0.054 (2)	0.0048 (13)	0.0106 (14)	-0.0039 (15)
C21	0.0268 (14)	0.0286 (13)	0.0309 (15)	0.0023 (11)	0.0069 (12)	0.0017 (11)
C22	0.0316 (15)	0.0316 (14)	0.0296 (15)	0.0002 (11)	0.0059 (12)	0.0054 (11)
C23	0.0303 (15)	0.0345 (15)	0.0343 (16)	-0.0040 (11)	0.0078 (12)	0.0066 (12)
C24	0.0319 (15)	0.0278 (13)	0.0292 (15)	0.0002 (11)	0.0081 (12)	-0.0007 (11)
C25	0.0325 (16)	0.0414 (16)	0.0344 (16)	0.0010 (12)	0.0051 (12)	0.0107 (12)
C26	0.0316 (16)	0.0363 (15)	0.0347 (16)	-0.0031 (12)	0.0093 (12)	0.0087 (12)
C27	0.0409 (18)	0.0406 (16)	0.0488 (18)	-0.0009 (13)	0.0057 (14)	-0.0072 (14)
C28	0.0288 (15)	0.0348 (14)	0.0322 (15)	-0.0011 (11)	0.0048 (12)	0.0008 (12)
C29	0.0362 (17)	0.0556 (18)	0.0410 (18)	0.0036 (14)	0.0009 (14)	0.0038 (14)
C30	0.0385 (17)	0.0429 (16)	0.0471 (18)	0.0095 (13)	0.0067 (14)	-0.0014 (14)
C31	0.0337 (17)	0.0511 (18)	0.056 (2)	-0.0041 (14)	0.0063 (14)	0.0061 (15)

Geometric parameters (Å, °)

O1—C1	1.450 (3)	C11—H11A	0.9800
O1—H1	0.853 (17)	C11—H11B	0.9800
O21—C21	1.445 (3)	C11—H11C	0.9800
O21—H21	0.832 (17)	C21—C26	1.520 (3)
O32—H32A	0.831 (17)	C21—C27	1.521 (3)
O32—H32B	0.852 (17)	C21—C22	1.524 (3)
C1—C6	1.519 (3)	C22—C23	1.530 (3)
C1—C2	1.519 (3)	C22—H22A	0.9900
C1—C7	1.520 (3)	С22—Н22В	0.9900
C2—C3	1.526 (3)	C23—C24	1.532 (3)
C2—H2A	0.9900	C23—H23A	0.9900
C2—H2B	0.9900	С23—Н23В	0.9900
C3—C4	1.529 (3)	C24—C25	1.529 (3)
С3—НЗА	0.9900	C24—C28	1.554 (3)
С3—НЗВ	0.9900	C24—H24	1.0000
C4—C5	1.530 (3)	C25—C26	1.526 (3)
C4—C8	1.551 (3)	C25—H25A	0.9900
C4—H4	1.0000	С25—Н25В	0.9900
C5—C6	1.526 (3)	C26—H26A	0.9900
C5—H5A	0.9900	C26—H26B	0.9900
С5—Н5В	0.9900	С27—Н27А	0.9800
С6—Н6А	0.9900	С27—Н27В	0.9800
С6—Н6В	0.9900	С27—Н27С	0.9800
С7—Н7А	0.9800	C28—C30	1.532 (4)

С7—Н7В	0.9800	C28—C31	1.533 (4)
С7—Н7С	0.9800	C28—C29	1.534 (4)
C8—C9	1.527 (4)	С29—Н29А	0.9800
C8—C11	1.535 (3)	С29—Н29В	0.9800
C8—C10	1.537 (4)	С29—Н29С	0.9800
С9—Н9А	0.9800	C30—H30A	0.9800
С9—Н9В	0.9800	C30—H30B	0.9800
С9—Н9С	0.9800	С30—Н30С	0.9800
C10—H10A	0.9800	C31—H31A	0.9800
C10—H10B	0.9800	C31—H31B	0.9800
C10—H10C	0.9800	C31—H31C	0.9800
C1—O1—H1	111.5 (19)	H11B—C11—H11C	109.5
C21—O21—H21	105 (2)	O21—C21—C26	105.41 (19)
H32A—O32—H32B	109 (3)	O21—C21—C27	108.6 (2)
O1—C1—C6	108.9 (2)	C26—C21—C27	112.2 (2)
O1—C1—C2	105.84 (18)	O21—C21—C22	109.26 (19)
C6—C1—C2	109.1 (2)	C26—C21—C22	109.2 (2)
O1—C1—C7	107.6 (2)	C27—C21—C22	111.9 (2)
C6—C1—C7	112.5 (2)	C21—C22—C23	113.1 (2)
C2—C1—C7	112.6 (2)	C21—C22—H22A	109.0
C1—C2—C3	112.8 (2)	C23—C22—H22A	109.0
C1—C2—H2A	109.0	C21—C22—H22B	109.0
C3—C2—H2A	109.0	С23—С22—Н22В	109.0
C1—C2—H2B	109.0	H22A—C22—H22B	107.8
C3—C2—H2B	109.0	C22—C23—C24	112.1 (2)
H2A—C2—H2B	107.8	С22—С23—Н23А	109.2
C2—C3—C4	112.0 (2)	С24—С23—Н23А	109.2
С2—С3—НЗА	109.2	С22—С23—Н23В	109.2
С4—С3—НЗА	109.2	C24—C23—H23B	109.2
С2—С3—Н3В	109.2	H23A—C23—H23B	107.9
С4—С3—Н3В	109.2	C25—C24—C23	108.5 (2)
НЗА—СЗ—НЗВ	107.9	C25—C24—C28	114.5 (2)
C3—C4—C5	108.6 (2)	C23—C24—C28	114.3 (2)
C3—C4—C8	114.7 (2)	С25—С24—Н24	106.3
C5—C4—C8	113.9 (2)	C23—C24—H24	106.3
С3—С4—Н4	106.3	C28—C24—H24	106.3
С5—С4—Н4	106.3	C26—C25—C24	112.2 (2)
C8—C4—H4	106.3	C26—C25—H25A	109.2
C6—C5—C4	112.3 (2)	C24—C25—H25A	109.2
С6—С5—Н5А	109.1	С26—С25—Н25В	109.2
С4—С5—Н5А	109.1	С24—С25—Н25В	109.2
С6—С5—Н5В	109.1	H25A—C25—H25B	107.9
C4—C5—H5B	109.1	C21—C26—C25	113.0 (2)
H5A—C5—H5B	107.9	C21—C26—H26A	109.0
C1—C6—C5	112.4 (2)	C25—C26—H26A	109.0
С1—С6—Н6А	109.1	C21—C26—H26B	109.0
С5—С6—Н6А	109.1	С25—С26—Н26В	109.0
С1—С6—Н6В	109.1	H26A—C26—H26B	107.8
С5—С6—Н6В	109.1	С21—С27—Н27А	109.5

H6A—C6—H6B	107.9	С21—С27—Н27В	109.5
С1—С7—Н7А	109.5	H27A—C27—H27B	109.5
С1—С7—Н7В	109.5	С21—С27—Н27С	109.5
H7A—C7—H7B	109.5	H27A—C27—H27C	109.5
С1—С7—Н7С	109.5	H27B—C27—H27C	109.5
H7A—C7—H7C	109.5	C30—C28—C31	108.4 (2)
H7B—C7—H7C	109.5	C30—C28—C29	108.7 (2)
C9—C8—C11	107.7 (2)	C31—C28—C29	107.5 (2)
C9—C8—C10	108.8 (2)	C30—C28—C24	112.3 (2)
C11—C8—C10	108.4 (2)	C31—C28—C24	110.7 (2)
C9—C8—C4	109.4 (2)	C29—C28—C24	109.1 (2)
C11—C8—C4	110.3 (2)	С28—С29—Н29А	109.5
C10—C8—C4	112.0 (2)	С28—С29—Н29В	109.5
С8—С9—Н9А	109.5	H29A—C29—H29B	109.5
С8—С9—Н9В	109.5	С28—С29—Н29С	109.5
Н9А—С9—Н9В	109.5	H29A—C29—H29C	109.5
С8—С9—Н9С	109.5	H29B—C29—H29C	109.5
Н9А—С9—Н9С	109.5	C28—C30—H30A	109.5
H9B-C9-H9C	109.5	C28—C30—H30B	109.5
C8—C10—H10A	109.5	H30A—C30—H30B	109.5
C8—C10—H10B	109.5	$C_{28} = C_{30} = H_{30}C_{30}$	109.5
H10A—C10—H10B	109.5	$H_{30A} - C_{30} - H_{30C}$	109.5
C8 - C10 - H10C	109.5	$H_{30}B_{}C_{30}$ $H_{30}C_{}$	109.5
H10A - C10 - H10C	109.5	$C_{28} = C_{31} = H_{31A}$	109.5
H10B-C10-H10C	109.5	C28—C31—H31B	109.5
C8—C11—H11A	109.5	$H_{31}A = C_{31} = H_{31}B$	109.5
C8-C11-H11B	109.5	C_{28} C_{31} $H_{31}C$	109.5
H11A-C11-H11B	109.5	$H_{31}A = C_{31} = H_{31}C$	109.5
C8_C11_H11C	109.5	H31B_C31_H31C	109.5
	109.5	listib est liste	109.5
	107.5	021 021 022 022	1(0,0,(2))
01 - C1 - C2 - C3	-1/1.6(2)	021 - 021 - 022 - 023	168.0(2)
$C_{0} = C_{1} = C_{2} = C_{3}$	-54.6(3)	$C_{26} = C_{21} = C_{22} = C_{23}$	53.2(3)
C/C1C2C3	/1.0 (3)	C2/C21C22C23	-/1.6 (3)
C1 - C2 - C3 - C4	56.7 (3)	C21—C22—C23—C24	-56.1 (3)
C2 - C3 - C4 - C5	-54.9 (3)	C22—C23—C24—C25	55.3 (3)
C2—C3—C4—C8	176.4 (2)	C22—C23—C24—C28	-175.6 (2)
C3—C4—C5—C6	55.2 (3)	C23—C24—C25—C26	-55.7 (3)
C8—C4—C5—C6	-175.6 (2)	C28—C24—C25—C26	1/5.3 (2)
01	169.57 (19)	021-C21-C26-C25	-170.8 (2)
C2—C1—C6—C5	54.5 (3)	C27—C21—C26—C25	71.2 (3)
C7—C1—C6—C5	-71.2 (3)	C22—C21—C26—C25	-53.5 (3)
C4—C5—C6—C1	-56.9 (3)	C24—C25—C26—C21	56.9 (3)
C3—C4—C8—C9	-175.6 (2)	C25—C24—C28—C30	58.4 (3)
C5—C4—C8—C9	58.4 (3)	C23—C24—C28—C30	-67.7 (3)
C3—C4—C8—C11	-57.2 (3)	C25—C24—C28—C31	179.7 (2)
C5—C4—C8—C11	176.8 (2)	C23—C24—C28—C31	53.6 (3)
C3—C4—C8—C10	63.7 (3)	C25—C24—C28—C29	-62.2 (3)
C5—C4—C8—C10	-62.3 (3)	C23—C24—C28—C29	171.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O21—H21···O32	0.83 (2)	1.90 (2)	2.725 (3)	172 (3)
O32—H32A…O1	0.83 (2)	2.01 (2)	2.834 (2)	169 (3)
O32—H32B…O1 ⁱ	0.85 (2)	1.98 (2)	2.820 (3)	170 (3)
01—H1…O21 ⁱⁱ	0.85 (2)	1.87 (2)	2.727 (2)	177 (3)
Symmetry codes: (i) $-x$, $-y+1$, $-z$; (ii)	-x, y+1/2, -z+1/2.			

